Investigation of Magnetic Field Effect on Natural Convection Flow using Fast $\Psi - \Omega$ Method

M.A. Taghikhani$^1$, H.Najafkhani$^1$

1. Department of Engineering, Imam Khomeini International University, Qazvin, Iran

*Corresponding Author email: taghikhani@ENG.ikiu.ac.ir

ABSTRACT: The laminar steady magneto-hydrodynamics natural convection in a filled square enclosure with internal heat generation is investigated by two-dimensional numerical simulation. The enclosure is heated by a uniform volumetric heat density and walls have constant temperature. A fixed magnetic field is applied to the enclosure. The dimensionless governing equations are solved numerically for the stream function, vorticity and temperature using finite difference method for various Rayleigh (Ra) and Hartmann (Ha) numbers in MATLAB software. The stream function equation is solved using fast Poisson's equation solver on a rectangular grid (POICALC function in MATLAB), vorticity and temperature equations are solved using red-black Gauss-Seidel and bi-conjugate gradient stabilized (BiCGSTAB) methods respectively. The proposed method is fast and there is no need to the under-relaxation factors for variables compared to commercial methods (e.g. SIMPLE) and is applicable for high Rayleigh numbers in steady state. The ratio of the Lorentz force to the buoyancy force ($\text{Ha}^2/\text{Ra}$) is introduced as an index to compare the contribution of natural convection and magnetic field strength on heat transfer.

Keywords: Magnetohydrodynamics(MHD); Natural Convection; Square Cavity; Stream Function; Vorticity; POICALC Function

INTRODUCTION

The set of equations which describe MHD are a combination of the Navier-Stokes equations of fluid dynamics and Maxwell's equations of electromagnetism. These differential equations have to be solved simultaneously, either analytically or numerically. In industrial problems and microelectronic heat transfer devices was used an electrically conducting fluid subjected to magnetic field, thus, the fluid experiences a Lorentz force and its effect is to reduce the flow velocities which in turn affects in the heat transfer rate. Laminar natural convection flows have significant applications in many engineering areas including cooling of electronic equipment, nuclear reactor insulation, solar energy collection, and crystal growth in liquids and have been investigated by a number of researchers and a rich and variety of numerical results have been published due to this phenomenon.

An analytical solution to the equations of magnetohydrodynamics is proposed in (Garandet and Alboussiere, 1992) that can be used to model the effect of a transverse magnetic field on buoyancy driven convection in a two-dimensional cavity. The control volume algorithm is used in (Al-Najem et al., 1998; Sarris et al., 2005; Kandaswamy et al., 2008; Sheikhzadeh et al., 2011) to solve the two dimensional transient MHD equations with alternating direct implicit procedure (ADI). Finite difference method and Finite element method have been developed in (Borgh et al., 1996; Borghi et al., 2004; Verardi and Cardoso 1998; Verardi et al., 2001; Verardi et al., 2002; Shadid et al., 2010) for the solution of two-dimensional steady state electrodynamic problem in magnetohydrodynamic flows. A mathematical model describing the dynamics of magnetic field influence on a conducting liquid in a square cavity is presented in (Krzeminski et al., 2000) such that biharmonic mathematical model was used with stream function and the magnetic potential.

A finite element method for the solution of 3D incompressible magnetohydrodynamic is presented in (Salah et al., 2001). The buoyancy-driven magnetohydrodynamic flow in a liquid-metal filled cubic enclosure with internal heat generation is investigated by three-dimensional numerical simulation in (Piazza and Ciofalo, 2002). An analysis has been performed (Mahmud et al., 2003) to study the first and second laws (of thermodynamics) characteristics of flow and heat transfer inside a vertical channel made of two parallel plates under the action of transverse magnetic field. A two-dimensional mathematical model has been developed to study the interaction between gravitational body force and self-induced electromagnetic body force in a Joule-heated liquid pool in a rectangular cavity, with an aspect ratio of 2 in (Sugilal et al., 2005).

Steady, laminar, natural-convection flow in the presence of a magnetic field in an inclined rectangular
enclosure heated from one side and cooled from the adjacent side was considered in (Ece and Büyük, 2006; Ece and Büyük 2007) so that the governing equations were solved numerically for the stream function, vorticity and temperature using the differential quadrature method. A finite volume code based on PATANKAR’s SIMPLER method is utilized in (Pirmohammadi et al., 2009; Pirmohammadi and Ghassemi 2009; Pirmohammadi et al., 2010; Pirmohammadi et al., 2011) with constant Prandtl (Pr) number.

The present study investigates the laminar steady convection in an enclosure in the presence of a magnetic field. The enclosure is filled with an electrically conducting fluid whose Prandtl number is 0.733. Therefore, a two-dimensional numerical model is developed to solve the vorticity, stream function and temperature governing equations of buoyancy-driven natural convection flow inside a cavity. The study pursues numerical solution to study the effect of magnetic field strength and Ra number on the natural convection and heat transfer.

Mathematical formulation

Steady, laminar, natural-convection flow in the presence of a magnetic field in a square enclosure was considered. Dimensional coordinates with the x-axis measuring along the bottom wall and y-axis being normal to it along the left wall are used. The geometry and the coordinate system are schematically shown in Fig. 1. Magnetic flux density B is applied with respect to the coordinate system. The walls are kept at a constant temperature T=0.

Mathematical formulation

Steady, laminar, natural-convection flow in the presence of a magnetic field in a square enclosure was considered. Dimensional coordinates with the x-axis measuring along the bottom wall and y-axis being normal to it along the left wall are used. The geometry and the coordinate system are schematically shown in Fig. 1. Magnetic flux density B is applied with respect to the coordinate system. The walls are kept at a constant temperature T=0.

Continuity, change of linear momentum and energy equations are written as follows

\[ \nabla \cdot \vec{v} = 0 \]  \hspace{1cm} (1)
\[ \rho (\vec{v} \cdot \nabla) \vec{v} = \rho \vec{g} - \nabla p + \mu \nabla^2 \vec{v} + \vec{J} \times \vec{B} \]  \hspace{1cm} (2)
\[ (\vec{v} \cdot \nabla)T = \alpha \nabla^2 T + \frac{q}{\rho C_p} \]  \hspace{1cm} (3)

where, \( \vec{v} \) is the velocity vector, \( p \) is the pressure, \( T \) is the temperature, \( \vec{g} \) is the gravitational acceleration, \( \rho \) is the density, \( \mu \) is the viscosity, \( C_p \) is the specific heat, \( \alpha \) is the thermal diffusivity of the fluid and \( q \) is volumetric heat density, respectively, \( \vec{J} \) is the current density and \( \vec{B} \) is magnetic field. The magnetic Reynolds number was assumed to be small and the induced magnetic field due to the motion of the electrically conducting fluid was neglected. The current density can be written as
\[ \vec{J} = \sigma (-\nabla \phi + \vec{v} \times \vec{B}) \]  \hspace{1cm} (4)

Where \( \sigma \) is the electrical conductivity of the fluid and \( \phi \) is the electric potential. The conservation of the electric charge is
\[ \nabla \cdot \vec{J} = 0 \]  \hspace{1cm} (5)

From (4) and (5) is derived:
\[ \nabla^2 \phi = 0 \]  \hspace{1cm} (6)

Since there is always somewhere around the cavity an electrically insulating boundary, the unique solution is \( \nabla \phi = 0 \) which means that the electric field vanishes everywhere. The governing equations in scalar form under Boussinesq approximation are written as

---

**Figure 1. Geometry and the coordinate system**
\[
\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0 \tag{7}
\]

\[
-\mu \left( \frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} \right) + \rho_0 \left( \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} \right) = -\frac{\partial p}{\partial x} \tag{8}
\]

\[
-\mu \left( \frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} \right) + \rho_0 \left( \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_y}{\partial y} \right) = -\frac{\partial p}{\partial y} - \rho_0 (1-\beta T)g_y - \sigma B_{z1}^2 v_y \tag{9}
\]

\[
-\alpha \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} = \frac{q}{\rho C_p} \tag{10}
\]

Here $\beta$ is the coefficient of thermal expansion of the fluid and $\rho_0$ is the density of the fluid at temperature $T=0$.

Stream function and vorticity are defined as follows

\[
v_x = \frac{\partial \psi}{\partial y} \tag{11}
\]

\[
v_y = -\frac{\partial \psi}{\partial x} \tag{12}
\]

\[
\omega = \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \tag{13}
\]

Therefore the governing equations reduce to

\[
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega \tag{14}
\]

\[
\rho_0 \left( \frac{\partial \omega}{\partial x} + v_y \frac{\partial \omega}{\partial y} \right) = \mu \left( \frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) + \rho_0 \beta g_y \frac{\partial T}{\partial x} - \sigma B_{z1}^2 \frac{\partial v_y}{\partial x} \tag{15}
\]

Dimensionless variables used in the analysis are according to,

\[
X = \frac{x}{L}, \quad Y = \frac{y}{L}, \quad V_x = \frac{Lv_x}{\alpha}, \quad V_y = \frac{Lv_y}{\alpha}, \quad \Psi = \frac{\psi}{\alpha}, \quad \Omega = \frac{L^2 \omega}{\alpha}, \quad \theta = \frac{kT}{L^2 q} \tag{16}
\]

where $k$ is the thermal conductivity. Dimensionless numbers, the Prandtl, Grashof, Rayleigh and Hartmann numbers are defined as follows,

\[
\text{Pr} = \frac{\mu}{\rho \alpha}, \quad \text{Gr} = \frac{\rho_0^2 g \beta \rho L^2 q}{k \mu^2}, \quad \text{Ra} = \text{Pr} \cdot \text{Gr}, \quad H_a = B_{z1} L \sqrt{\frac{\alpha}{\mu}} \tag{17}
\]

According to the equations (16) and (17), the governing equations in this study are given in dimensionless form as

\[
\frac{\partial^2 \Psi}{\partial X^2} + \frac{\partial^2 \Psi}{\partial Y^2} = -\Omega \tag{18}
\]

\[
(V_x \frac{\partial \Omega}{\partial X} + V_y \frac{\partial \Omega}{\partial Y}) = \text{Pr} \left( \frac{\partial^2 \Omega}{\partial X^2} + \frac{\partial^2 \Omega}{\partial Y^2} \right) + \text{Pr} \cdot \text{Ra} \frac{\partial \theta}{\partial X} - \text{Pr} \cdot H_a \frac{\partial V_y}{\partial X} \tag{19}
\]

\[
V_x \frac{\partial \theta}{\partial X} + V_y \frac{\partial \theta}{\partial Y} = \left( \frac{\partial^2 \theta}{\partial X^2} + \frac{\partial^2 \theta}{\partial Y^2} \right) + 1 \tag{20}
\]

Which have to be solved subject to the boundary conditions $\Psi = 0$ and $\theta = 0$ at all walls. The vorticity values at the wall is calculated using Jensen's formula (Erturk, 2009)

\[
\Omega_0 = \frac{-4 \Psi_1 + 0.5 \Psi_2}{h} - \frac{3V}{h} \tag{21}
\]

Where subscript 0 refers to the points on the wall, 1 refers to the points adjacent to the wall, 2 refers to the second line of points adjacent to the wall, V refers to the velocity of the wall with its value being equal to 1 on the moving wall, and 0 on the stationary walls while $h$ is the grid spacing. The velocities at a point $(x,y)$ in the cavity may be approximated as follow(Gupta and Kalita, 2005):
\[ V_x (x, y) = \frac{3}{4h} [\Psi(x, y + h) - \Psi(x, y - h)] - \frac{1}{4} [V_x(x, y + h) - V_x(x, y - h)] \]
\[ V_y (x, y) = -\frac{3}{4h} [\Psi(x + h, y) - \Psi(x, y - h)] - \frac{1}{4} [V_y(x + h, y) - V_y(x, y - h)] \]  

(22)

**Solution method**

The dimensionless governing equations associated with the boundary conditions are solved for stream function, vorticity and temperature numerically using the second order finite difference method. The hybrid-scheme, which is a combination of the central difference scheme and the upwind scheme, is used to discretize the convection terms. The sequence of algorithm is provided here:

1. Guess the velocity and the stream function fields.
2. Solve discretized temperature equation using Jacobi BiCGSTAB method.
3. Calculate velocity field using stream function field (equation 22).
4. Calculate vorticity boundary condition using velocity and stream function fields (equation 21).
5. Solve the discretized vorticity equation using red-black Gauss-Seidel method.
6. Solve the discretized stream function equation using fast Poisson’s equation solver on a rectangular grid (POICALC function) in MATLAB.
7. Check error in temperature, vorticity and stream function fields. If errors are below the specified tolerance then exit the loop otherwise return to step 2. Repeat the whole procedure till converged solution is obtained.

The tolerance of the convergence criterion used for all variables is $10^{-6}$:

\[ \frac{\theta^{k+1} - \theta^k}{\theta^{k+1}} \leq 10^{-6} \]  

(23)

\[ \frac{\Psi^{k+1} - \Psi^k}{\Psi^{k+1}} \leq 10^{-6} \]  

(24)

\[ \frac{\Omega^{k+1} - \Omega^k}{\Omega^{k+1}} \leq 10^{-6} \]  

(25)

**Grid refinement check**

In order to determine the proper grid size for this study, a grid independence test are conducted with \(Pr=1\) and \(Ra=10^5\). The following six grid sizes are considered for the grid independence study. These grid densities are \(32 \times 32, 40 \times 40, 64 \times 64, 80 \times 80, 96 \times 96\) and \(128 \times 128\). The maximum temperature \(\theta_{max}\) and maximum stream function \(\Psi_{max}\) of the fluid in the cavity are used as a sensitivity measure of the accuracy of the solution and are selected as the monitoring variables for the grid independence study. Table 1 shows the dependence of the quantities \(\theta_{max}\) and \(\Psi_{max}\) on the grid size. Considering the accuracy of the numerical values, the following calculations are performed with \(64 \times 64\) grid.

<table>
<thead>
<tr>
<th>Grid size</th>
<th>(\text{Ha}=0)</th>
<th>(\text{Ha}=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_{max})</td>
<td>(\Psi_{max})</td>
<td>(\theta_{max})</td>
</tr>
<tr>
<td>32\times32</td>
<td>0.064688</td>
<td>2.3540</td>
</tr>
<tr>
<td>40\times40</td>
<td>0.064730</td>
<td>2.3493</td>
</tr>
<tr>
<td>64\times64</td>
<td>0.064727</td>
<td>2.3423</td>
</tr>
<tr>
<td>80\times80</td>
<td>0.064714</td>
<td>2.3419</td>
</tr>
<tr>
<td>96\times96</td>
<td>0.064718</td>
<td>2.3409</td>
</tr>
<tr>
<td>128\times128</td>
<td>0.064717</td>
<td>2.3390</td>
</tr>
</tbody>
</table>

**Code validation**

In order to verify the accuracy of the numerical code, comparisons with the previously published results are necessary. The present numerical code is verified against a documented numerical study. The code is benchmarked with a differentially heated cavity problem, with the right wall maintained at cooled condition. The left wall is hot whereas the two horizontal walls are under adiabatic condition. The governing equations are solved on a uniform grid of \(64 \times 64\), and for a Prandtl number, \(Pr = 0.733\). The solutions are obtained for two values of Rayleigh number \(10^4, 10^5\) and Hartmann number \(Ha=0\). The \(Pr\) and \(Ra\) are chosen such that the direct comparison is possible with the benchmark solution (Pirmohammadi et al., 2009) which is based on finite volume scheme. The isotherms and streamlines are compared with results of (Pirmohammadi et al., 2009) in
figures 2 and 3. It is observed that the present results agree well with previous numerical work.

![Present work](image1)

**Figure 2. Comparison of isotherms at various Ra and Ha=0**

![Present work](image2)

**Figure 3. Comparison of streamlines at various Ra and Ha=0**

**RESULTS AND DISCUSSIONS**

Parametric investigations are performed for a square cavity in the following range of parameter values:
- Rayleigh number: \(10^4 \leq Ra \leq 10^7\);
- Prandtl number: \(Pr=0.733\);
- Hartmann number: \(0 \leq Ha \leq 500\).

The influence of the Ha number on the streamlines and isotherms inside the cavity at \(Ra=10^6\) are shown in figures 4 - 15. Table2 shows variations of dimensionless maximum temperature \((\theta_{max})\) and dimensionless maximum stream function \((\Psi_{max})\) with Ha and Ra numbers. The maximum value of stream function can be viewed as a measure of the intensity of natural convection in the cavity. It is evident from the table2 that in absence of magnetic field, by increasing the Ra, the maximum value of the stream function increases; this means that the flow move faster as natural convection is stronger and the isotherm will be distorted.

For the square cavity, the maximum dimensionless temperature \((\theta_{max})\) reduces with increasing Ra. This is because as Ra increases, heat transfer due to convection increases. It is also observed that at low Ra number, the \(\theta_{max}\) is at the centre of the cavity and it shifts upwards with increase in Ra. For Ra\(\geq5\times10^5\) due to strong convective rolls, two local temperature maxima are observed in the cavity. These maxima shift upwards and towards side walls with the increase in Ra. The fluid circulates in the square cavity as two symmetrical counter-rotating rolls, moving upwards at the center and downwards near the cold side walls.

By applying a magnetic field we can suppress the natural convection so that the maximum value of the stream function reduces as Ha number increases and \(\theta_{max}\) is at the center of the cavity, indicating that most of the heat transfer is by heat conduction. For high Rayleigh number and for a weak magnetic field strength, convection is dominant heat transfer mechanism. From the streamlines pattern we see that as the Ha number increases, the streamlines will be parallel with the two side walls of the cavity and the streamlines are elongated. On the other hand it is clear from table 2 that for all Ra numbers by increasing the Ha number have a pure conduction regime. Because Lorentz force interacts with the buoyancy force and suppresses the
convection flow by reducing the velocities. Furthermore, it is shown that as the Ra number is increased, the convective heat transfer is increased, so that for suppression of convection is needed very high magnetic field.

<table>
<thead>
<tr>
<th>Ra</th>
<th>Ha</th>
<th>$\theta_{\text{max}}$</th>
<th>$\Psi_{\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^4$</td>
<td>0</td>
<td>0.073655</td>
<td>0.01594</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.073656</td>
<td>0.0043178</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.073657</td>
<td>0.0011301</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.073657</td>
<td>0.0005104</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>0.073657</td>
<td>0.0001858</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.073657</td>
<td>2.3075</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.064737</td>
<td>1.5926</td>
</tr>
<tr>
<td>$10^5$</td>
<td>100</td>
<td>0.073587</td>
<td>0.043171</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.073656</td>
<td>0.011301</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>0.073657</td>
<td>0.0051045</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.073657</td>
<td>0.0018587</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.045875</td>
<td>6.4695</td>
</tr>
<tr>
<td>$10^6$</td>
<td>50</td>
<td>0.068887</td>
<td>1.4913</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.073645</td>
<td>0.42893</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.073622</td>
<td>0.11296</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>0.073641</td>
<td>0.051033</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.073655</td>
<td>0.018586</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$10^7$</td>
<td>50</td>
<td>0.044108</td>
<td>6.4406</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.058396</td>
<td>3.3591</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.070802</td>
<td>1.0867</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>0.072981</td>
<td>0.50574</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.073553</td>
<td>0.18560</td>
</tr>
</tbody>
</table>

Figure 4. Isotherms of natural convection in a square cavity for Ra=$10^6$ and Ha=0

Figure 5. Streamlines of natural convection in a square cavity for Ra=$10^6$ and Ha=0
Figure 6. Isotherms of natural convection in a square cavity for Ra=10^6 and Ha=50

Figure 7. Streamlines of natural convection in a square cavity for Ra=10^6 and Ha=50

Figure 8. Isotherms of natural convection in a square cavity for Ra=10^6 and Ha=100

Figure 9. Streamlines of natural convection in a square cavity for Ra=10^6 and Ha=100
Figure 10. Isotherms of natural convection in a square cavity for $Ra=10^6$ and $Ha=200$

Figure 11. Streamlines of natural convection in a square cavity for $Ra=10^6$ and $Ha=200$

Figure 12. Isotherms of natural convection in a square cavity for $Ra=10^6$ and $Ha=300$

Figure 13. Streamlines of natural convection in a square cavity for $Ra=10^6$ and $Ha=300$
As was mentioned, natural convection of electrically conductive fluid in the enclosure is affected by buoyancy and Lorentz forces. The buoyancy force has an aiding effect on natural convection, but the Lorentz force has an opposing effect. Either of the two forces are important, when \( \frac{Ha^2}{Ra} = 1 \). The buoyancy force is dominant when \( \frac{Ha^2}{Ra} \ll 1 \) and the Lorentz force is dominant when \( \frac{Ha^2}{Ra} \gg 1 \). Variations of the maximum temperature in terms of \( \frac{Ha^2}{Ra} \) for various \( Ra \) are shown in Fig. 16. The figure 16 shows that at \( \frac{Ha^2}{Ra} > 0.1 \), the value of maximum temperature is constant (conduction regime). While at low \( \frac{Ha^2}{Ra} \) (\( \frac{Ha^2}{Ra} < 0.005 \)), the electromagnetic body force can be ignored.
CONCLUSION

In this paper was investigated the laminar steady convection in a cavity in the presence of a magnetic field. The cavity is filled with an electrically conducting fluid whose Prandtl number is 0.733. A two-dimensional numerical model was developed to solve the vorticity, stream function and temperature governing equations of buoyancy-driven natural convection flow inside the cavity. The stream function equation was solved using fast Poisson’s equation solver on a rectangular grid (POICALC function in MATLAB software), vorticity and temperature equations were solved using red-black Gauss-Seidel and bi-conjugate gradient stabilized (BiCGSTAB) methods respectively. It was observed that the effect of the magnetic field is to reduce the convective heat transfer inside the cavity. Furthermore, it is shown that as the Ra number is increased, the convective heat transfer is increased, so that for suppression of convection is needed very high magnetic field. The ratio of the Lorentz force to the buoyancy force \( (Ha^2/Ra) \) was introduced as an index to compare the contribution of natural convection and magnetic field intensity on heat transfer:

a) Thermally driven natural convection exists when \( Ha^2/Ra < 0.005 \).
b) Electromagnetically driven flows occur when \( Ha^2/Ra > 0.1 \).
c) Natural convection is governed by both electromagnetic body force and gravitational body force when \( 0.005 < Ha^2/Ra < 0.1 \).

Nomenclature

- \( B \): magnetic flux density vector: \( \text{Wb} \cdot \text{m}^{-2} \)
- \( C_p \): specific heat: \( \text{J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1} \)
- \( g \): gravitational acceleration vector: \( \text{m} \cdot \text{s}^{-2} \)
- \( h \): grid spacing: \( \text{m} \)
- \( J \): electric current density vector: \( \text{A} \cdot \text{m}^{-2} \)
- \( k \): thermal conductivity: \( \text{W} \cdot \text{m}^{-1} \cdot \text{K}^{-1} \)
- \( L \): dimension of cavity: \( \text{m} \)
- \( p \): pressure: \( \text{N} \cdot \text{m}^{-2} \)
- \( q \): volumetric heat source density: \( \text{W} \cdot \text{m}^{-3} \)
- \( T \): temperature: \( \text{K} \)
- \( v \): velocity vector: \( \text{m} \cdot \text{s}^{-1} \)
- \( x, y, z \): Cartesian coordinates: \( \text{m} \)

Greek symbols

- \( \alpha \): thermal diffusivity: \( \text{m}^2 \cdot \text{s}^{-1} \)
- \( \beta \): coefficient of volumetric expansion: \( \text{K}^{-1} \)
- \( \phi \): electric potential: \( \text{V} \)
- \( \mu \): dynamic viscosity: \( \text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-1} \)
- \( \rho \): density: \( \text{kg} \cdot \text{m}^{-3} \)
- \( \sigma \): electrical conductivity: \( \text{mho} \cdot \text{m}^{-1} \)
- \( \omega \): vorticity: \( \text{s}^{-1} \)
- \( \Psi \): stream function: \( \text{m}^2 \cdot \text{s}^{-1} \)

Subscript

- \( 0 \): reference value
- \( \text{max} \): maximum value
- \( x, y, z \): component of a vector quantity

Dimensionless quantities

- \( V \): velocity vector
- \( X \): Cartesian coordinate in \( x \) direction
- \( Y \): Cartesian coordinate in \( y \) direction
- \( \Omega \): vorticity
- \( \Psi \): stream function
- \( \theta \): temperature

Dimensionless numbers

- \( Gr \): Grashof number
- \( Ha \): Hartmann number
- \( Pr \): Prandtl number
- \( Ra \): Rayleigh number
REFERENCES


