Longstanding Problems of Higher Education and pedagogical practices from the Islamic perspective

Iraj Sadeqi Nasab

M.A in Library sciences, Department of High School Education, Ministry of Education, Andimeshk, Iran

Corresponding Author email: m_bakhtiarvand@yahoo.com

ABSTRACT: In the present article various aspects of higher education challenges in Iran are discussed with keeping an eye on curricula and pedagogical practices from the Islamic perspective. It is clearly argued that Longstanding Problems such as faculty quality, Problems Faced by Students and Insufficient Resources and Autonomy are the most significant challenges of higher education in Iran. New Realities resulted from new revolutions such as the internet and distance learning are also playing vital role in shaping the new higher education era in Iran.

Keywords: Higher education, Challenges, Pedagogical Practices, Islamic Perspective, Longstanding Problems

INTRODUCTION

Today, global wealth is concentrated less and less in factories, land, tools, and machinery. The knowledge, skills, and resourcefulness of people are increasingly critical to the world economy. Human capital in the United States is now estimated to be at least three times more important than physical capital. A century ago, this would not have been the case (Emily Hannun & Claudia Buchmann, 2003). The developed world is reacting quickly, with education a major political priority. High-quality human capital is developed in high-quality education systems, with tertiary education providing the advanced skills that command a premium in today's workplace (College Board, 2004).

Most developed countries have seen a substantial rise in the proportion of their young people receiving higher education. Lifelong learning is also being used to help workers adjust to rapidly changing economies (International Comparisons of 4-year College Continuation Rates, 2001). During the past two or three decades, however, attention has focused on primary education, especially for girls. This has led to a neglect of secondary and tertiary education, with higher education in a perilous state in many, if not most, developing countries. With a few notable exceptions, it is underfunded by governments and donors. As a result, quality is low and often deteriorating, while access remains limited. Higher education institutions (and whole systems) are politicized, poorly regulated, and sometimes corrupt (Burton Bollag, 2004).

We believe that a more balanced approach to education at all levels is needed. The focus on primary education is important, but an approach that pursues primary education alone will leave societies dangerously unprepared for survival in tomorrow's world. We live in a period of major structural change. The classic industrial revolution that started in the United Kingdom at the end of the eighteenth century spread gradually and unevenly to Europe and beyond (United Joint Economic Committee States Congress, 2000). By the end of the twentieth century, a number of so-called follower countries had joined the ranks of industrial nations, and today industrial countries are found throughout the world. Some have narrowed, and even closed, the gap between rich and poor, with the East Asian countries being a good example. Average incomes have tended to increase across the world (except in Sub-Saharan Africa) in the past 20 years, although one-quarter of the world’s population still lives in abject poverty. Advances in information technology, meanwhile, have made this ever-increasing volume of knowledge more accessible, effective, and powerful. Networked computers and new forms of telecommunications spread information around the world with dazzling speed (Steven J. Rosenstone & John Mark Hansen, 2003).

The Internet, in particular, means that more knowledge than ever is in circulation. Those who have the skills to use it have access to an extraordinarily valuable (and sustainable) resource (Emily Hannun & Claudia Buchmann, 2004).
Longstanding Problems and New Realities

Faculty Quality

A well-qualified and highly motivated faculty is critical to the quality of higher education institutions. Unfortunately, even at flagship universities in developing countries, many faculty members have little, if any, graduate-level training. This limits the level of knowledge imparted to students and restricts the students’ ability to access existing knowledge and generate new ideas (Heath A. Brown & Peter D. Syverson, 2004).

Teaching methods are often outmoded. Rote learning is common, with instructors doing little more in the classroom than copying their notes onto a blackboard. The students, who are frequently unable to afford a textbook, must then, transcribe the notes into a notebook, and those students who regurgitate a credible portion of their notes from memory achieve exam success (Total Endowment Assets, 2004). These passive approaches to teaching have little value in a world where creativity and flexibility are at a premium. A more enlightened view of learning is immediately needed, emphasizing active intellectual engagement, participation, and discovery, rather than the passive absorption of facts (Thomas B. Hoffer, 2003).

Improving the quality of faculty is made more difficult by the ill-conceived incentive structures found in many developing countries. Faculty pay is generally very low in relation to that offered by alternative professional occupations. Pay increases are governed by bureaucratic personnel systems that reward long service rather than success in teaching or research. Market forces, which attempt to reward good performance, are seldom used to determine pay in the higher education sector. Higher education institutions rely on the commitment of their faculty (Burton Bollag, 2004). Their consistent presence and availability to students and colleagues have an enormous influence in creating an atmosphere that encourages learning.

Yet few institutions in developing countries have strictures against moonlighting and excessive absenteeism (Richard Florida, 2004). Many faculty works part time at several institutions, devote little attention to research or to improving their teaching, and play little or no role in the life of the institutions employing them (Richard Florida, 2004). Faculty members are often more interested in teaching another course—often at an unaccredited school—than in increasing their presence and commitment to the main institution with which they are affiliated. With wages so low, it is difficult to condemn such behavior (Richard Florida, 2004).

Problems Faced by Students

In many institutions, students face difficult conditions for study. Severely overcrowded classes, inadequate library and laboratory facilities, distracting living conditions, and few, if any, student services are the norm. The financial strains currently faced by most universities are making conditions even worse (Richard Florida, 2004). Many students start their studies academically unprepared for higher education. Poor basic and secondary education, combined with a lack of selection in the academic system, lie at the root of this problem. Yet rarely does an institution respond by creating remedial programs for inadequately prepared students (Ibid. & Richard Florida, 2004). Students also face the widespread requirement to choose their area of specialization early in their course, in some cases ahead of matriculation. Once a choice is made, change is frequently difficult or even impossible. Such inflexibility closes off options, with students unable to sample courses in different academic areas (Martin Kenney, 1990). Early specialization can prevent costly indecisiveness, but systems that are unforgiving of early “mistakes” do not develop and unleash the true potential of many students (Ronald G. Ehrenberg, Michael J. Rizzo & George H. Jakubson, 2003).

Insufficient Resources and Autonomy

Many of the problems involving higher education are rooted in a lack of resources. For example, developing countries spend far less than developed countries on each student. But finding new funds is not easy (Richard Florida, 2004). Although absolute spending is low, developing countries are already spending a higher proportion of their (smaller) incomes than the developed world on higher education, with public spending for education growing more quickly than income or total government spending. Higher education is clearly placing greater demands on public budgets, with the private sector and international donors taking up only some of the slack. Redirecting money from primary or secondary education is rarely an option, with spending per student on higher education already considerably higher than is common at other levels of the education system (Ronald G. Ehrenberg, 2004).

Most public universities are highly dependent on central governments for their financial resources. Tuition fees are often negligible or nonexistent, and attempts to increase their level encounter major resistance (Richard Florida, 2004). Even when tuition fees are collected, the funds often bypass the university and go directly into the coffers of ministries of finance or central revenue departments. Budgets must typically be approved by government officials, who may have little understanding of higher education in general, of the goals and capabilities of a particular university, or of the local context in which it operates (William G. Gale & Peter R. Orszag, 2004). The expansion and differentiation of higher education is occurring at the same time as the pace of knowledge creation is dramatically accelerating (Derek Bok, 2003). The categories into which new
knowledge falls are becoming increasingly specialized, and a revolution has occurred in people’s ability to access knowledge quickly and from increasingly distant locations. These changes are fundamentally altering what economies produce, as well as where and how they produce it (Richard Florida, 2004). Organizations are changing, as are the skills needed to run them and the way they utilize human capital (Peter D. Blumberg, 1997).

Industrial countries have been by far the greatest contributors to, and beneficiaries of, this knowledge revolution. To the extent that this trend continues, the income gap between industrial and developing countries will widen further (Scott Shane, 2004). Higher education institutions, as the prime creators and conveyors of knowledge, must be at the forefront of efforts to narrow the development gap between industrial and developing countries.

Characteristics of the Knowledge Revolution

The knowledge revolution can be described in a few key dimensions.

Worldwide, the rate at which scientific papers are published has doubled in the past two decades. In economies where scientific capacity is expanding particularly rapidly, such as China, Hong Kong, Singapore, South Korea, and Taiwan, the publication rate has more than doubled in the past decade. The number of academic journals is now doubling roughly every five years, with new titles reflecting increasingly narrow specialties (Sheila Slaughter & Larry L. Leslie, 2003). The higher education in Iran should enhance its level in publishing scientific journals.

In both industrial and developing countries, the number of patent applications has been increasing steadily. For example, in 1996 residents of Brazil, India, and the United States filed 42, 66, and 71 percent more patent applications, respectively, than in 1986 (www.caut.ca, 2004). Recording of inventions in international scientific societies can be an indication of high level of higher education in Iran.

A country ranking of published scientific papers per capita during 1981–94 does not include a single developing country among the top 15. China and India make the list when assessed in terms of the absolute number of papers published, but this is due mainly to the sheer size of their populations. The increasing importance of knowledge, in conjunction with the fact that most developing countries are falling further behind in their ability to create, absorb, and use it, has some major implications for developing countries (Burton Bollag, 2004).

Countries that are only weakly connected to the rapidly emerging global knowledge system will find themselves increasingly at a disadvantage. The gap between industrial and developing countries in per capita incomes and standards of living will widen unless the corresponding gaps in knowledge and access to knowledge are successfully addressed (William G. Gale & Peter R. Orszag, 2004).

Within countries, inequality will probably rise as some individuals and groups use their education (particularly higher education) to gain access to the knowledge system and then translate that access into higher incomes (Ibid. & Richard Florida, 2004).

Rectifying this situation is critical, but not easy. Although higher education is the traditional venue for gaining advanced knowledge, in many countries a large proportion of secondary school graduates are ill prepared to continue their studies and join the knowledge-centered world. Remedial programs at some higher education institutions may help rectify this problem, but strenuous efforts to improve primary and secondary education, including an emphasis on using technology to gain new knowledge, will also be necessary (International Comparisons of 4-year College Continuation Rates, 2001). In most developing countries higher education exhibits severe deficiencies, with the expansion of the system an aggravating factor. Demand for increased access is likely to continue, with public and private sectors seeking to meet it with an array of new higher education institutions (Heath A. Brown & Peter D. Syverson, 2004). Rapid and chaotic expansion is usually the result, with the public sector generally underfunded and the private (for profit) sector having problems establishing quality programs that address anything other than short-term, market-driven needs. A lack of information about institutional quality makes it difficult for students to make choices about their education, making it hard to enlist consumer demand in the battle to raise standards (www.caut.ca, 2004). Developing countries are left with a formidable task—expanding their higher education system and improving quality, all within continuing budgetary constraints.

Systems of Higher Education

A higher education system consists of three basic elements (Ronald G. Ehrenberg, 2004):

- The individual higher education institutions (public and private, whether profit or nonprofit; academic and vocational; undergraduate and graduate; onsite and distance-based, etc.), including their faculties, students, physical resources, missions, and strategic plans;
- The organizations that are directly involved in financing, managing, or operating higher education institutions, comprising a range of both public and private bodies.
The formal and informal rules that guide institutional and individual behavior and interactions among the various actors. The system is not sealed from the outside world: it is at least loosely bound to the overall education system, for example, to secondary schools that provide most of its new students (Richard Florida, 2004). It is connected to the labor market and the business community, and to various government departments that set the policy environment in which it operates. It also has international links, to regional and global higher education communities, as well as to bilateral and multilateral donors, foundations, and nongovernmental organizations (Richard Florida, 2004). As we have mentioned, higher education across the world is undergoing a process of differentiation. This is happening horizontally as new providers enter the system, and vertically as institutional types proliferate. A diverse system, with a variety of institutions pursuing different goals and student audiences, is best able to serve individual and national goals (Burton Bollag, 2004). Recognizing the nature and legitimacy of this diversity helps ensure that there are fewer gaps in what the system can provide, while preventing duplication of effort. It is also helpful for halting institutional drift, where an institution loses focus on its “core business,” failing to recognize that it is already serving a particular group of students well. In the case of midlevel institutions, if their crucial role is not understood they may try to gain prestige by moving up the educational hierarchy (Derek Bok, 2003). This is unhelpful if it leaves a group of students poorly served and if the institutions are unable to function properly as they move upstream. Virtual Universities and Distance Learning Distance learning is an increasingly important part of the higher education system, with its ability to reach students in remote areas and address the higher education needs of adults. It is not in itself a new idea—the University of South Africa, for example, has offered academic degrees through distance study for decades—but is growing at an astonishing rate (Scott Shane, 2004). Distance learning can be offered by traditional educational institutions or by new institutions that specialize in this mode of study. While recent developments in communication technology and computers have vastly increased the technical viability of distance education, economic viability is still an issue in many countries because of costly and extensive infrastructure requirements (Peter D. Blumberg, 1997). In the last, distance learning has been seen mainly as a cost-effective means of meeting demand, with policymakers paying inadequate attention to ensuring that it provides comparable quality to traditional modes of delivery.

The Task Force believes that distance education offers many exciting possibilities (Martin Kenney, 1990). Innovative curricula can be combined with interactive, Internet-based technology, traditional educational media such as television and print, written materials, and direct contact with tutors (Thomas B. Hoffer, 2003). Higher education institutions can thrive only if their funding levels are adequate, stable and—subject to good performance—secure in the long term. Institutions must plan far ahead if they are to provide consistent instruction and a secure and productive work environment for their faculty. In many areas, insecure funding stifles the ability and the incentive to carry out research (Richard Florida, 2004). Governments have a crucial role to play in providing stability. They must finance public institutions on a long-term basis, not as if they were part of a nonessential government sector with the attendant vulnerability to the vagaries of fluctuations in public spending (Richard Florida, 2004). They must also help create an environment conducive to the sustainable financing of private institutions and help the whole higher education system look to the future, ensuring that tomorrow’s operating budgets will be sufficient to maintain and run the new infrastructure higher education will need. The new realities facing higher education mean that many traditional ways of running higher education systems are becoming less relevant (Sheila Slaughter & Larry L. Leslie, 2003). A laissez-faire approach, which assumes that all the components of a higher education system will simply fit together and serve everyone’s needs, is untenable. System-wide coordination is clearly needed. But neither is centralized control the answer. Diversity is greatly needed, as are autonomy and competition among similar institutions. Funding models will also have to adapt, moving toward a flexible system that draws on both the public and the private purse (Ronald G. Ehrneberg, Michael J. Rizzo & George H. Jakubson, 2003). The balance between the public and private sector is currently changing. Public higher education systems cannot meet sharp increases in demand and, as a result, the private components of higher education systems (especially for-profit institutions) have grown relatively quickly. But the growth of the private sector has tended to be quite haphazard (Richard Florida, 2004). As a result, in most developing countries no clearly identified set of individuals or institutions is working to ensure that all the goals of the country’s higher education sector will be fulfilled. A coherent and rational approach toward management of the entire higher education sector is therefore needed. More traditional, informal arrangements are no longer adequate (Derek Bok, 2003). Policymakers must decide on the extent to which they will guide the development of their country’s higher education sector, and the extent to which they think market forces will lead to the establishment and operation of a viable system. Overall, the Task Force believes that government guidance is an essential part of any solution (Scott Shane, 2004). Good governance promotes educational quality. A tradition of governance vary from country to country and by type of institution, but the Task Force has suggested a set of basic principles that promote good governance across a wide variety of situations (Richard Florida, 2004). Unfortunately these principles are frequently not observed, especially in developing countries, and especially where traditions of higher education are still not firmly established. The Task Force has therefore offered a number of tools that will help higher education systems and institutions
move closer to the application of these principles. Good governance may be crucial, but it is not a panacea (William G. Gale & Peter R. Orszag, 2004).

In many parts of the world, pedagogy takes the form of canned lectures by professors and rote memorization by students; cheating is rampant and tolerated; and letters of recommendation are for sale. Shared governance does not guarantee quality if a tyrannical majority is determined to prevent progress (College Board, 2004). Perhaps most importantly, quality is not likely to be achieved as long as professors are forced to moonlight as a consequence of inadequate pay. The Task Force hopes that higher education policymakers will start to make better use of the tools of good governance (Peter D. Blumberg, 1997). They will not solve all problems quickly. But they will start the process of achieving sustainable and far-reaching improvement. Science and Technology The problem of insufficient scientific capacity in developing countries is acute, but it is not insurmountable (William G. Gale & Peter R. Orszag, 2004). Higher education has played a leading role in bringing about impressive scientific achievements under difficult circumstances in various parts of the developing world. Generally, these achievements have arisen as a result of an early, deep, and sustained commitment to particular areas of science or technology. Notwithstanding the success stories, developing countries are falling further behind industrial countries in terms of their science and technology capacities and achievements (United Joint Economic Committee States Congress, 2004). Perhaps the most disturbing aspect of this trend is that many areas of scientific inquiry that hold great promise for the development of international public goods are receiving inadequate attention. These problems bode ill for social and economic development, and suggest a further widening of global inequality in standards of living (www.caut.ca, 2004). Many very useful discoveries end up sidelined because of a lack of support either from business or government, not because they are inherently inapplicable. Inadequate resources (both physical and human) for science education, and the absence of key values and traditions that promote effective scientific inquiry and training, are among the main causes of the deteriorating position of developing countries in the sciences (Emily Hannun & Claudia Buchmann, 2004). We have suggested some means by which higher education institutions and governments can address these problems. Strong international leadership that provides sustained intellectual and financial support for strengthening the scientific capacity of developing countries is also urgently needed. Equally important are efforts to strengthen scientific links between institutions of higher education in developing countries and centers of scientific excellence worldwide (Burton Bollag, 2004). The key question that will exercise policymakers in developing countries is “where should promoting science and technology higher education rank in the long list of priorities for resources?” The answer will vary from country to country. Science and technology are moving with extraordinary speed. Countries such as India and many of the Southeast Asian economies now play a strong role in the development of software and hardware (International Comparisons of 4-year College Continuation Rates, 2001). With the many incalculable spin-off benefits yielded by technologies such as the Internet, the world is entering the future before our eyes. Playing a role in that future requires every developing country to think strategically about how their inevitably limited resources for science and technology higher education might best be deployed to the advantage of future generations (Total Endowment Assets, 2004). The Importance of General Education In some countries, the term “liberal education” recalls colonial domination and education. This is unfortunate. While this particular method of education has Western roots, our emphasis is on an educational approach developed by each country, paying specific attention to its own culture and its particular needs (William G. Gale & Peter R. Orszag, 2004). The goal for all countries is similar—a broad, flexible, interactive education that addresses the whole human being—but the road to achieving this goal is unique and cannot simply be transplanted from one country to another. The time has come for national debates to begin. What is an educated person? Once a country has accepted the general education concept, what are the implications for curricula and other aspects of training? This debate is under way in a number of developing countries. Some institutions in India, the Republic of Korea, Nigeria, Pakistan, the Philippines, parts of Latin America, and some others already practice general education, although the quality of these efforts is uneven (Thomas B. Hoffer, 2003). Leaders from both government and education concluded that national preparation for the knowledge-based world required soundly designed liberal education, as opposed to exclusive emphasis on specialist, and usually technical, subjects. The Task Force hopes this interest in general education will continue to spread across the developing world, and that many more countries will develop increasingly broad, flexible, and innovative curricula (Ronald G. Ehrenberg, 2004).

CONCLUSION

Currently, two billion people live in the world’s low-income countries. Their average income has a purchasing power of less than one-sixteenth of that enjoyed by the one billion people who live in the high-income countries. Even more astonishing is the ratio of the average income of the poorest and the richest one billion people on the planet: it is—conservatively—in the region of 1 to 80 (Total Endowment Assets, 2004). The disturbing truth is that these enormous disparities are poised to grow even more extreme, impelled in large
part by the progress of the knowledge revolution and the continuing brain drain. The Task Force believes that strengthening higher education is a rational and feasible way for many countries to mitigate or avert further deterioration in their relative incomes, while positioning themselves on a higher and more sharply rising development trajectory (College Board, 2004). Higher education cannot be developed to the exclusion of other policy initiatives. The development of infrastructure, better governance, public health improvements, trade reform, and financial market development—these and others will be needed as well. The benefits of higher education require a long gestation period. There may be shortcuts to establishing educational infrastructure, but influencing people to understand and convey higher education values and best practice will take decades, as opposed to a few years (Peter D. Blumberg, 1997). For this reason the Task Force urges policymakers and donors—public and private, national and international—to waste no time. They must work with educational leaders and other key stakeholders to reposition higher education in developing countries. Only then will it produce larger and better trained pools of graduates and research of higher quality. The chance is simply too great to miss. As H.G. Wells said in *The Outline of History*, “Human history becomes more and more a race between education and catastrophe (Thomas B. Hoffer, 2003).”

Concerning the above-mentioned discussion about the revolution of science, we can say the governments should provide the infrastructures for making an in Iran specifically in higher education level (Burton Bollag, 2004). Governmental principals and legislators must make a pattern for the higher education scientific matters that is based on the Islamic regulations so that the level of scientific education in higher education in Iran will increase and it will stand in a perfect position in the international level as well.

REFERENCES

“Total Endowment Assets” from the National Association of College and Business Officers. The incremental revenue assumes an annual endowment payout of 4.5 percent.

Blumberg, Peter D. 1997. “From ‘Publish or Perish’ to ‘Profit or Perish’: Revenue From University Technology Transfer and the 501(c)(3) Tax Exemption.” Rebecca S. Lowen, Creating the Cold War University.

Florida R. 2004. “America’s Best and Brightest are Leaving … and Taking the Creative Economy With Them.”

2262